If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+22X-5040=0
a = 1; b = 22; c = -5040;
Δ = b2-4ac
Δ = 222-4·1·(-5040)
Δ = 20644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20644}=\sqrt{4*5161}=\sqrt{4}*\sqrt{5161}=2\sqrt{5161}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{5161}}{2*1}=\frac{-22-2\sqrt{5161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{5161}}{2*1}=\frac{-22+2\sqrt{5161}}{2} $
| X+1/4x=4.5 | | 4(2x+13|)=80 | | 42=15u-9u | | 5x²-2x-3=0 | | 8+3(x+8)=-2x+9(x+8) | | 4x+-1=3x+3 | | .25(x)=750 | | 18x=-11x | | 5x-3+21-x=0 | | 6d-3=4d+17 | | 8x^2+10x-102=0 | | X^2+45+14x=0 | | 13.x+6=0 | | 2.7=k-8.5 | | (6x-1)(2x+1)10-(2x+1)(x)5=(6x-1)(x)15 | | 42=3(5x-10 | | -(v-1)=-6v+26 | | 3,8x-(6+0,4x)=1.3(6-2.6x) | | 7x+2=3x*26 | | -(2q+6)+3(2q+5)=2q | | -(2q+6)+3(2+5)=2q | | X-3/x+4=3/2 | | 7(y-27)=21 | | 6v-17.1=21.3 | | 8x-17=4x-1 | | 41=6p/3+15 | | 14=u/20.48+6 | | (5x-1)4-(2x-5)3=(2x-5)(5x-1)-3 | | 20=5(2y+7) | | 16t2+5t=30 | | 8x=180−10x | | 4y2+34-10=88 |